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ABSTRACT

In this paper, we address the problem of flood detection in ur-
ban environments from single Capella Space X-Band High-
Resolution Synthetic Aperture Radar (HR SAR) images. Our
approach uses a Convolutional Neural Network (CNN) archi-
tecture and proposes two innovations to deal with a limited
amount of training data and the burden of manual labeling.
We introduce a two-stage labeling process utilizing threshold-
based predictions to reduce the amount of manual interaction
in the annotation process. Moreover, we use several auxiliary
inputs to give more context to the CNN. We train our model
on 28 flooded and non-flooded scenes and evaluate its perfor-
mance on 4 out-of-sample test images. We show that our ap-
proach outperforms threshold-based segmentation in all test
scenes.

Index Terms— Flood Detection, SAR, Deep Learning,
Semantic segmentation

1. INTRODUCTION

Flooding is a natural hazard that has a tremendous deleteri-
ous impact on the population and causes more damage than
any other type of disaster [1]. Due to global climate change,
floods are becoming more frequent and of increasing inten-
sity. For instance, in August 2022, flooding in Pakistan re-
sulted in more than 1700 deaths and nearly 40 billion dollars
in damage [2]. Readily available remote sensing satellite data
allows for scalable, low cost, near-real time disaster monitor-
ing and mapping in order to support response and relief. In
this paper we introduce a CNN [3] based method to map ur-
ban floods inundation using HR SAR imagery.

SAR is a type of active Earth observation sensor that op-
erates in the microwave domain and produces imagery inde-
pendent of weather and illumination conditions. For this rea-
son, SAR is a powerful tool to map flood inundation when
no optical imagery is available due to persistent cloud cover.
Moreover, the resolution of the Capella Space high-resolution
imagery modes (between 0.5m and 1.2m) potentially enables
the detection of water at a street level which makes these sen-
sors appealing for urban flood mapping and property-level in-
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sights. It is well known that water is characterized in SAR
images by a low backscatter. Using this principle, backscatter
thresholding-based flood-mapping methods have been devel-
oped and successfully used in the past [4]. The main limi-
tation of such methods is that they produce false positives in
other areas that also appear dark such as asphalt, concrete,
and building and terrain shadows. Conversely, when a road is
flooded, water cannot be easily distinguished from asphalt,
leading to false negatives. Although some of these issues
could be mitigated by using change detection methods [5],
acquiring pre-event images on a global scale and updating
these images regularly to avoid the influence non-flood related
changes would be prohibitive in terms of cost and storage.

In this paper, we propose a deep learning based solution
that operates on single images to overcome these limitations.
CNNs have been very successful at tackling various com-
plex computer vision problems [6]. They have been used
for semantic segmentation of remote sensing and, in partic-
ular, SAR imagery [7]. CNNs extract high level hierarchical
spatial features that lead to better segmentation results than
traditional Machine Learning algorithms. In this study, we
use the UNet++ [8] architecture that has reported excellent
performance on semantic segmentation problems. One short-
coming of CNN-based techniques is that performance crit-
ically depends on the number of training samples. In our
case, because we are using commercial SAR imagery which
is expensive to acquire, the number of images we can use for
training is limited. Moreover, creating manual semantic seg-
mentation labels on large amounts of examples is extremely
time-consuming.

Our contribution is to address these limitations by intro-
ducing two innovations: 1) to decrease the amount of manual
annotation, we propose an efficient two-stage labeling pro-
cess that combines manually drawn labels with thresholding
predictions and 2) to cope with the small amount of training
data and the backscattering ambiguities inherent to SAR, we
introduce several auxiliary input layers to inform the CNN in
difficult cases.

2. METHODS

In the present work, we use the Capella Space constella-
tion that acquires high-resolution X-band imagery in HH



Fig. 1. Pre-labeled image. Only orange chips have to be
further manually labeled. Others are labeled using different
thresholds or early CNN predictions.
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Fig. 2. Manual labeling is done by adding and removing
regions to a base prediction. The optical reference is from
©PlanetScope (color coding R = NIR, G = Red, B = Green).
Water appears in green.

polarization. To get the largest possible footprints, we use
geocoded products in Stripmap mode that covers 5 × 20km
terrain patches and are at approximately 1.2 m resolution.
This allows us to resolve water pixels even in dense urban
areas. Getting access to a constellation of 7 sensors allows
for a theoretical sub-daily revisit time, increasing the chances
of observing short duration floods.

2.1. Collection of training data

In order to get the largest possible amount of training data
we had two possible sources at hand: 1) the “archive” im-
ages that are already acquired and available from Capella’s
database and 2) the “tasked” images which we have collected
by tasking the satellite through Capella’s console. For the
latter, we were continuously monitoring major flood events
based on news and warnings issued by the National Weather
Service.

2.2. Data annotation

From a total of 67 acquired Stripmap swaths we have selected
32 images to be annotated based on their flood/permanent wa-
ter, level of urbanness, and the availability of optical reference
data. Manual annotation is a time-consuming task: depending
on the content, labeling a single swath can take up to a week.

To speed up the process we have introduced two innova-
tions in the labeling framework. During a preliminary assess-
ment of global thresholding, we have noticed that for many
areas, these methods produced satisfactory labels. Therefore,
we have introduced a pre-labeling stage prior to the manual
labeling task to reduce the amount of data to be annotated by
hand. This pre-task consists of the following steps: first, sev-
eral pseudo-labeled images are computed from global thresh-
olding methods with different parameter settings as well as
an early CNN prediction obtained from a few fully manually
labeled scenes. The image is divided into 768 × 768 pix-
els chips. For each chip, the annotator decides if one of the
pseudo-labeled maps can be used as a training label or if the
chip needs to be manually labeled. Fig. 1 illustrates this pro-
cess.

The second stage consists of labeling the chips that have
been marked for manual annotation with a GUI based tool
developed internally at Floodbase that allows the addition and
removal of polygons on a base prediction chosen to be the
“overall best” during the pre-labeling task, as illustrated in
Fig. 2. This way, manual annotation is only a label correction
step which saves a substantial amount of time.

2.3. Deep Learning model and training

The CNN model architecture is based on a U-Net++ archi-
tecture [8] with an EfficientNet-B1 [9] backbone pre-trained
on ImageNet and an Adam optimizer with an initial learning
rate of 10−3 and no weight decay. The average of dice and
cross-entropy was used as the loss function. Capella provides
tasked imagery at a high resolution at the cost of smaller foot-
prints. For this reason, the number of images used for labeling
was relatively small, and it is well known that CNNs perform
better with a large training dataset [6].

To cope with the relatively small number of training sam-
ples we have added additional inputs to the model, to provide
the CNN with more context about the scene. The following
input channels were used: in addition to the HH Capella dB
intensity, we have added a cloud-free and flood-free 10 meter
ESA Sentinel-2 optical image prior to the SAR acquisition to
introduce a general scene understanding. We used the blue,
green, red, NIR, SWIR16, SWIR22 channels which are rel-
evant to water detection. The rich multi-spectral content of
such data allows the model to disambiguate low backscatter
areas that look like water in SAR data such as roads and some
large roofs. The occurrence layer of the Global Surface Wa-
ter (GSW) model [10] produced by the Joint Research Com-
mission (JRC) indicates how frequently water was observed



Scene CNN (Average) Threshold (Average) CNN (NF+FB) Threshold (NF+FB) CNN (PW) Threshold (PW)

Freeport, USA 87.0 66.7 75.3 49.2 98.7 84.1

Miami Beach, USA 87.7 60.9 75.7 27.9 99.7 94.0

London, UK 53.6 43.9 7.5 1.7 99.6 86.1

Brisbane, Australia 77.1 62.4 55.5 44.5 98.7 80.3

Table 1. CNN and thresholding IoU scores in percentage (see text for details) for our test scenes on Never Flooded and Flooded
Before (NF+FB) and Permanent Water (PW) areas. ”Average” denotes the mean of NF+FB and PW IoUs.

in each 30 meter pixel historically. The slope of the Coper-
nicus Global Digital Elevation Model (DEM) [11] at 30 me-
ter resolution helps avoid false positives in mountain shadows
since water is rarely observed in areas of high slope. Finally,
the VH and VV channels of the Sentinel-1 Global Backscat-
ter Model [12] act like a SAR prior for each 10 meter pixel.
For example, pixels with low backscatter in Capella and high
backscatter in the prior have a higher probability of being
flood water.

Our initial 32 image data set was split into: a training-
validation dataset with 7968 chips from 28 scenes, and a test-
ing dataset with 1341 chips from 4 withheld scenes. The size
of the chips is 768× 768 pixels. Then, the training-validation
dataset was split into three folds for cross-validation. Chips
with a lot of flood water were shown to the model more fre-
quently than chips without flood water during training.

3. RESULTS

For quantitative evaluation, we have computed the Intersec-
tion over Union (IoU) score which is the ratio between the
area of overlap and the area of union of the reference and pre-
dicted labels. This metric has been averaged across our 4 test
scenes but computed separately for permanent water (PW) ar-
eas (where GSW > 30%) and the combination of “never-
flooded” and “flooded before” (NF+FB) areas (where 0 ≤
GSW ≤ 30%). We have compared the output of our model
to flood maps from a simple threshold based segmentation.
In PW areas, our model’s average IoU was 99.2% against
86.1% for thresholding. In NF+FB areas, the model’s IoU
was 53.6% against 30.8% for thresholding. We can observe
that the CNN based method largely outperformed threshold-
ing. However, the performance of both methods significantly
drops on NF+FB compared to PW.

Table 1 displays the per scene IoUs on NF+FB and PW
areas. These results show that the performance of both meth-
ods is relatively stable across scenes for PW areas whereas
there is a significant variation in NF+FB area. In the last case
we can also notice more disparity between the two methods
where the performance gain in using the CNN is higher. The
London image shows the worst performance for both meth-
ods, although the CNN still outperforms thresholding.
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Fig. 3. CNN (cyan) and thresholding (red) predictions
on Freeport, USA (crop). The optical reference is from
©PlanetScope (color coding R = NIR, G = Red, B = Green).
Water appears in green. Green and orange circles highlight
resp. correct and incorrect segmentation.

Fig. 3 and 4 show visual examples of how the CNN per-
forms in different situations. These two examples provide
a good summary of the strengths and weaknesses of single-
polarization, single-image HR SAR for urban flood mapping:
water is accurately detected on open natural areas which are
often dark when water is present, but models fall short in de-
tecting water on smooth surfaces like streets and parking lots.
Moreover, extreme cases of natural areas with low backscat-
tering result in False Positives. In the case of the London
scene, the CNN correctly predicts no water inside the city
except for the Thames river and some lakes. Outside the
city it avoids most False Positives in the fields. Threshold-
ing overpredicts inside the city due to lots of low-backscatter
noise pixels, but also does detect the Thames river inside the
city. Outside the city it overpredicts in harvested fields, tree
shadow lines, streets, building shadows, etc. For Freeport,
the CNN predicts the flood water well except for some as-
phalted areas and some flooded streets between dense settle-



Optical SAR

CNN Threshold

Fig. 4. Example of false positives due to low backscatter veg-
etation for CNN (cyan) and thresholding (red) on London, UK
(crop). The optical reference is from ©Google Maps imagery.

ments. Thresholding detects the flooding, but overpredicts as
it assigns all low backscatter regions to water which are typi-
cally streets and building shadows.

4. CONCLUSION

In this paper we have presented a deep learning approach to
map urban floods using Capella Space HR SAR imagery. Our
model can easily be used in a near-real time emergency ac-
tivation scenario to provide high-resolution flood maps when
optical observations are not available due to cloud cover. Sev-
eral innovations were introduced to speed up the annotation
process and to cope with the limited amount of training data.
Our study shows that the CNN approach outperforms thresh-
olding in all tested areas. Some limitations like false positives
due to low-backscatter vegetation could be solved in the fu-
ture by introducing similar scenes in the training data. False
negatives in asphalted areas are due to the nature of SAR im-
ages where water cannot be distinguished from other smooth
surfaces.
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